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The following identify is often used in option pricing. For any twice-
di¤erentiable function f(S) de�ned on R we can write

f(S) = f(�) + f 0(�)(S � �) + (1)Z �

�1
f 00(K)(K � S)+dK +

Z 1

�

f 00(K)(S �K)+dK

for some threshold �. I have seen three proofs of this.

1. Uses the Dirac delta function. Found in papers by Carr and Madan.

2. Uses the Fundamental Theorem of Calculus. Found in a paper by John
Crosby at Glasgow University.

3. Uses the Taylor Series expansion of f(S): Found in a paper by Attilio
Meucci.

In this Note these three proofs are each presented in detail. We �rst present
some functions that will be needed.

1 Dirac Delta and Other Functions

De�nition of the Dirac delta function �(K)

�(K) =

�
1 for K = 0
0 elsewhere

and
Z 1

�1
�(K)dK = 1:

The sifting property of the Dirac delta function is

f(a) =

Z a+"

a�"
f(K)� (a�K) dK

for " > 0: The Heaviside function H(K) is de�ned as

H(K) =

�
1 for K > 0
0 for K < 0

= 1(K>0):

The derivative of H(K) is easy to check

d

dK
H(K) = �(K):
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The derivative of (K)+ = max(0;K) is also easy to check

d

dK
(K)+ = H(K):

The de�nitions and derivatives needed for the proofs in this Note are presented
in the following table.

For (S �K) For (K � S)

�(S �K) =
�
1 for K = S
0 elsewhere

�(K � S) =
�
1 for S = K
0 elsewhere

H(S �K) = 1(S>K) H(K � S) = 1(K>S)

d
dKH(S �K) = �(S �K)

d
dKH(K � S) = �(K � S)

d
dK (S �K)

+ = �1(S>K) d
dK (K � S)+ = 1(K>S)

2 Proof Using the Dirac Delta Function

Carr and Madan consider S > 0 in equation (1), since they use it for an under-
lying price S:

f(S) = f(�) + f 0(�)(S � �) + (2)Z �

0

f 00(K)(K � S)+dK +

Z 1

�

f 00(K)(S �K)+dK:

Apply the sifting property of the Dirac delta function to f(S) and choose some
threshold � > 0

f(S) =

Z 1

0

f(K)�(S �K)dK (3)

=

Z �

0

f(K)�(S �K)dK +

Z 1

�

f(K)�(S �K)dK

=

Z �

0

f(K)�(K � S)dK +

Z 1

�

f(K)�(S �K)dK

= I1 + I2:

2.1 First Integration by Parts

Apply integration by parts to each of the two integrals I1 and I2.

2



2.1.1 Evaluating I1

For I1 choose u = f(K); v0 = �(K � S). Hence u0 = f 0(K); v = 1(K>S).

I1 =

Z �

0

f(K)�(K � S)dK (4)

= f(K)1(K>S)
���
0
�
Z

�

0

f 0(K)1(K>S)dK (5)

= f(�)1(�>S) �
Z

�

0

f 0(K)1(K>S)dK:

2.1.2 Evaluating I2

For I2 choose u = f(K); v0 = �(S �K) so that u0 = f 0(K); v = �1(K>S):

I2 =

Z 1

�

f(K)�(S �K)dK (6)

= � f(K)1(S>K)
��1
�
+

Z 1

�

f 0(K)1(K<S)dK (7)

= f(�)1(S>�) +

Z 1

�

f 0(K)1(K<S)dK:

Substitute I1 and I2 from equations (4) and (6) into equation (3) to obtain

f(S) = f(�)�
Z

�

0

f 0(K)1(K>S)dK +

Z 1

�

f 0(K)1(K<S)dK (8)

= f(�)� I3 + I4:

2.2 Second Integration by Parts

Apply integration by parts again, to each of the two integrals I3 and I4.

2.2.1 Evaluating I3

For I3 choose u = f 0(K); v = 1(K>S); u0 = f 00(K); v0 = (K � S)+. Hence

I3 =

Z
�

0

f 0(K)1(K>S)dK (9)

= f 0(K)(K � S)+
���
0
�
Z �

0

f 00(K)(K � S)+dK (10)

= f 0(�)(�� S)+ �
Z �

0

f 00(K)(K � S)+dK:
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2.2.2 Evaluating I4

Finally, for I4 choose u = f 0(K); v = 1(S>K); u0 = f 00(K); v0 = �(S �K)+:

I4 =

Z 1

�

f 0(K)1(K<S)dK (11)

= � f 0(K)(S �K)+
��1
�
+

Z 1

�

f 00(K)(S �K)+dK (12)

= �f 0(�)(S � �)+ +
Z 1

�

f 00(K)(S �K)+dK:

2.3 Obtaining the Payo¤Decomposition

Substitute I3 and I4 from equations (9) and (11) into equation (8) to btain

f(S) = f(�) + f 0(�)
�
(S � �)+ � (�� S)+

�
(13)

+

Z �

0

f 00(K)(K � S)+dK +

Z 1

�

f 00(K)(S �K)+dK:

Equivalently, since [(S � �)+ � (�� S)+] = S � � (which can be veri�ed by
considering the cases S > � and S < � separately), equation (13) can be written

f(S) = f(�) + f 0(�)(S � �) +Z �

0

f 00(K)(K � S)+dK +

Z 1

�

f 00(K)(S �K)+

which is equation (2).

3 Proof Using the FTC

This proof uses the Fundamental Theorem of Calculus (FTC)

f(S)� f(�) =
Z S

�

f 0(u)du:

Hence we can write f(S) as

f(S) = f(�) +

Z S

�

f 0(u)du: (14)

We will focus on the integral
R S
�
f 0(u)du in equation (14). Note that the integral

can be broken into two parts: when S > � and when S < �Z S

�

f 0(u)du = 1(S>�)

Z S

�

f 0(u)du+ 1(S<�)

Z S

�

f 0(u)du (15)

= 1(S>�)

Z S

�

f 0(u)du� 1(S<�)
Z �

S

f 0(u)du:
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In equation (15) apply the FTC to the �rst integral so that f 0(u) � f 0(�) =R u
�
f 00(v)dv and to the second integral so that f 0(u)� f 0(�) = �

R �
u
f 00(v)dvZ S

�

f 0(u)du = 1(S>�)

Z S

�

�
f 0(�) +

Z u

�

f 00(v)dv

�
du� (16)

1(S<�)

Z �

S

�
f 0(�)�

Z �

u

f 00(v)dv

�
du:

Re-arrange the integrals to obtainZ S

�

f 0(u)du = 1(S>�)

Z S

�

f 0(�)du� 1(S<�)
Z �

S

f 0(�)du+ (17)

1(S>�)

Z S

�

Z u

�

f 00(v)dvdu+ 1(S<�)

Z �

S

Z �

u

f 00(v)dvdu:

Consider each of these four integrals in equation (17) in pairs.

3.1 First Pair of Integrals

The �rst two integrals in equation (17) are

1(S>�)

Z S

�

f 0(�)du� 1(S<�)
Z �

S

f 0(�)du (18)

= 1(S>�)

Z S

�

f 0(�)du+ 1(S<�)

Z S

�

f 0(�)du

=

Z S

�

f 0(�)du = f 0(�)

Z S

�

du = f 0(�)(S � �):

3.2 Second Pair of Integrals

The last two integrals in equation (1) can be evaluated using Fubini�s theorem
�changing the order of integration, making sure to preserve the same domain
of integration. The integral Z S

�

Z u

�

f 00(v)dvdu (19)

has domain of integration
�
�<v<u
�<u<S

	
, which is equivalent to

�
v<u<S
�<v<S

	
. Hence we

can write the integral (19) asZ S

�

Z u

�

f 00(v)dvdu =

Z S

�

Z S

v

f 00(v)dudv =

Z S

�

f 00(v)(S � v)dv:

Similarly, the integral Z �

S

Z �

u

f 00(v)dvdu (20)
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has domain of integration
�
u<v<�
S<u<�

	
, which is equivalent to

�
S<u<v
S<v<�

	
. Hence we

can write the integral (20) asZ �

S

Z �

u

f 00(v)dvdu =

Z �

S

Z v

S

f 00(v)dudv =

Z �

S

f 00(v)(v � S)dv:

3.3 Recombing the Integrals

We put these two integrals back into equation (17), and substitute into equation
(14). We obtain

f(S) = f(�) + 1(S>�)

Z S

�

f 00(v)(S � v)dv + 1(S<�)
Z �

S

f 00(v)(v � S)dv: (21)

Since 1(S>�) = 1 only when S > �, and since 1(S<�) = 1 only when S < �,
these can be replaced by the ()+ function on the linear parts of each integrand
in equation (21). Hence we have the desired result

f(S) = f(�) + f 0(�)(S � �) +
Z 1

�

f 00(v)(S � v)+dv +
Z �

0

f 00(v)(v � S)+dv

which, again, is equation (1).

4 Proof Using Taylor Series

De�ne the function g(x) as

g(x) = f(k)+f 0(k)(x�k)+
Z 1

k

f 00(u)(x�u)+du+
Z k

�1
f 00(u)(u�x)+du: (22)

The proof involves demonstrating that g(x) = f(x). This is done by showing
that g(k) = f(k) and that the derivatives of g and f evaluated at any point x
are the same, i.e. g(n)(x) = f (n)(x). The Taylor series expansion of f and g
will therefore be identical, and consequently, so will f and g themselves, at all
values of x. First note that for x = k, equation (22) becomes

g(k) = f(k)+f 0(k)(k�k)+
Z 1

k

f 00(u)(k�u)+du+
Z k

�1
f 00(u)(u�k)+du: (23)

In equation (23), the �rst integral is zero since (k � u)+ = 0 for u > k, and the
second integral is zero since (u� k)+ = 0 for u < k. Hence g(k) = f(k).

4.1 First Derivative

Take the �rst derivative of g(x) in equation (22)

g0(x) = f 0(k) +

Z 1

k

f 00(u)
d

dx
(x� u)+du+

Z k

�1
f 00(u)

d

dx
(u� x)+du(24)

= f 0(k) +

Z 1

k

f 00(u)H(x� u)du�
Z k

�1
f 00(u)H(u� x)du:

6



Consider the second line of equation (24). In the �rst integral, H(x � u) = 1
only when u < x. Hence the upper limit can be replaced with x. Moreover,
H(x � u) = 1 only when x > k, in which case the integral is

R x
k
f 00(u)du.

This can be accomplished by including the term H(x� k) outside the integral.
Similarly, for the second integral, H(u � x) = 1 only when u > x so the lower
limit can be replaced with x, and H(u � x) = 1 only when x < k, so we put
H(k � x) outside the integral. This means that equation () can be written as

g0(x) = f 0(k) +H(x� k)
Z x

k

f 00(u)du�H(k � x)
Z k

x

f 00(u)du: (25)

To evaluate equation (25) we consider the cases x > k and x < k separately.

4.1.1 Case 1

For x > k we have H(k � x) = 0 and

H(x� k)
Z x

k

f 00(u)du =

Z x

k

f 00(u)du = f 0(x)� f 0(k)

Hence equation (25) becomes

g0(x) = f 0(k) + [f 0(x)� f 0(k)]� 0 = f 0(x):

4.1.2 Case 2

For x < k we have H(x� k) = 0 and

H(k � x)
Z k

x

f 00(u)du = f 0(k)� f(x):

Hence equation (25) becomes

g0(x) = f 0(k) + 0� [f 0(k)� f 0(x)] = f 0(x):

So for both cases we have g0(x) = f 0(x):

4.2 Second Derivative

Take the second derivative of g(x) in equation (22)

g00(x) =

Z 1

k

f 00(u)
d2

dx2
(x� u)+du+

Z k

�1
f 00(u)

d2

dx2
(u� x)+du (26)

=

Z 1

k

f 00(u)�(x� u)du+
Z k

�1
f 00(u)�(u� x)du:

Consider the second line of equation (26). The sifting property of the Dirac
delta function implies that the �rst integral is f 00(x), but only when x > k,
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since this ensures that the domain of integral is su¢ ciently wide for the sifting
property to hold. Otherwise, the integral is zero. This can be accomplished
by multiplying the integral by H(x� k): Similarly, the second integral is f 00(x)
only when x < k, so we multiply the integral by H(k � x). This implies that
we can write g00(x) as

g00(x) = H(x� k)
Z 1

k

f 00(u)�(x� u)du+H(k � x)
Z k

�1
f 00(u)�(u� x)du

= H(x� k)f 00(x) +H(k � x)f 00(x)
= f 00(x)

where the second line follows by the sifting property of the Dirac delta function.

4.3 Higher Order Derivatives

The nth derivative of g(x) is

dn

dxn
g(x) =

dn

dxn

"
f(k) + f 0(k)(x� k) +

Z 1

k

f 00(u)(x� u)+du+
Z k

�1
f 00(u)(u� x)+du

#

=
dn�2

dxn�2

"Z 1

k

f 00(u)
d2

dx2
(x� u)+du+

Z k

�1
f 00(u)

d2

dx2
(u� x)+du

#
:

From equation (26) in the preceding section we know that the term inside the
square brackets is simply d2

dx2 f(x). Hence we can write

dn

dxn
g(x) =

dn�2

dxn�2

�
d2

dx2
f(x)

�
=
dn

dxn
f(x):

Apply the Taylor theorem to g(x)

g(x) = g(k) +
1X
n=1

1

n!
g(n)(x� k)n

= f(k) +
1X
n=1

1

n!
f (n)(x� k)n

= f(x):

Since the functions f and g are identical, equation (22) becomes equation (1)
and the proof is complete.
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